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Abstract
The scalar scattering of a plane wave by a strictly convex obstacle with
impedance boundary conditions is considered. A uniform bound of the total
cross section for all values of the frequency is presented. The high-frequency
limit of the transport cross section is calculated and presented as a classical
functional of the variational calculus.

PACS numbers: 43.20.−f, 11.55.-m,

1. Introduction

Consider a strictly convex body � ⊂ R
3 with C2-boundary ∂� and k > 0. The scattered field

is given by the Helmholtz equation and a radiation condition

�u(r) + k2u(r) = 0, r ∈ �′ = R
3\� (1)∫

|r|=R

∣∣∣∣∂u(r)

∂|r| − iku(r)

∣∣∣∣2

dS = o(1), R → ∞, (2)

with Dirichlet, Neumann or impedance boundary conditions of the form

Bγ (u)|∂� ≡ −Bγ (eik(r·θ0))|∂�, r = (x, y, z) ∈ ∂�, (3)

where γ > 0 is a constant, Bγ = (∂/∂n) + ikγ and eik(r·θ0) is an incident field formed by a
plane wave with incident angle θ0 = (0, 0, 1) ∈ S2. The operator Bγ appears (for example
[1]) as a stationary analog of the ∂

∂n
− γ ∂

∂t
for the non-reduced wave equation. In [2, 3] the

existence and uniqueness of the solution of (1)–(3) is proven. A function u(r) which satisfies
the mentioned conditions has the asymptotic

u(r) = eik|r|

|r| fγ (θ) + o

(
1

|r|
)

, r → ∞, θ = r/|r| ∈ S2, (4)
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where the function fγ (θ) = fγ (θ, k) is called scattering amplitude and the quantity

σγ =
∫

S2
|fγ (θ)|2 dµ(θ)

is called the total cross section. µ is a square element of the unit sphere. The projection on the
incident direction θ0 of the total momentum transmitted to the obstacle is given by a quantity
called transport cross section (for a large volume normalization)

Rγ =
∫

S2
〈θ0 − θ, θ0〉|fγ (θ)|2 dµ(θ). (5)

The case of impedance boundary conditions (i.e. finite values of γ > 0) is not completely
studied. We know [1, Theorem 1] that uniformly on every open subset of {θ ∈ S2 : θ 	= θ0}

fγ (θ) = 1

2
K(y+)−1/2 eik〈y+(θ)·(θ−θ0)〉

(
γ − 〈n(θ), θ〉
γ + 〈n(θ), θ〉

)
+ O(1/k), k → ∞. (6)

Here y+(θ) ∈ ∂� is the preimage of n(θ) := (θ − θ0)/(|θ − θ0|) ∈ S2 under the Gauss map
(for example [4]), K(y+) is the Gauss curvature at y+ ∈ ∂�. But unfortunately the behavior
of σγ for γ > 0 and large values of k is not known since we do not know the behavior of the
scattering amplitude near the forward direction θ0 and therefore we cannot calculate limits of
observables like Rγ i.e. even if integrand vanishes at θ0 = 0. But such calculations become
possible if we prove that σγ is bounded from infinity uniformly for all (large enough) values
of k. In other words, we should prove that the contribution of the diffraction peak to the total
cross section is uniformly bounded. Note that this fact is known for the cases of Dirichlet or
Neumann boundary conditions. We will discuss it in part 3.

Theorem 1.

(1) The following inequality holds for all values of k > 0:

σγ � 2S(∂�)
(1 + γ )2

γ
, (7)

where S(∂�) is the area of the ∂�.
(2) Let the visible part of � be written as a graph of the smooth function g(x) : I → R

3,
where I ∈ R

2 is the part of the plane perpendicular to θ0; then

lim
k→∞

Rγ =
∫
I

2 dx

1 + |∇g|2
(

γ
√

1 + |∇g|2 − 1

γ
√

1 + |∇g|2 + 1

)2

. (8)

The cases γ = 0 and γ = ∞ correspond to the classical resistance functional which was
investigated starting from Newton [5, 1685] and in many recent articles (for example [6–8]).
For the cases 0 < γ < ∞, note that representation (8) has the form of a standard functional
and it provides a means for further study using Optimization Theory.

2. Proofs

Let u be the field of the outgoing wave satisfying (1), (2), (3). Everywhere below
‖ · ‖ = ‖ · ‖L2(∂�,dS). Let us prove that∥∥∥∥∂u

∂n
+ ikγ u

∥∥∥∥ � kγ ‖u‖. (9)
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Start noting that∥∥∥∥∂u

∂n
+ ikγ u

∥∥∥∥2

=
∥∥∥∥∂u

∂n

∥∥∥∥2

+ 2kγ Im

(∫
∂�

∂u

∂n
u dS

)
+ (kγ )2‖u‖2.

Using the well-known fact (which follows from the Second Green’s identity)

Im

(∫
∂�

∂u

∂n
u dS

)
= kσγ � 0, (10)

we obtain (9). Note now that from (3), it follows that∥∥∥∥∂u

∂n
+ ikγ u

∥∥∥∥ =
∥∥∥∥∂ eik(r·θ0)

∂n
+ ikγ eik(r·θ0)

∥∥∥∥
�

∥∥∥∥∂ eik(r·θ0)

∂n

∥∥∥∥ + kγ ‖eik(r·θ0)‖ �
√

Sk(1 + γ ).

Here and below S = S(∂�). So using (9), we obtain

γ ‖u‖ �
√

S(1 + γ ). (11)

Also from (3) we have

−∂u

∂n
= ikγ u +

∂ eik(r·θ0)

∂n
+ ikγ eik(r·θ0),

therefore ∥∥∥∥∂u

∂n

∥∥∥∥ � kγ ‖u| +

∥∥∥∥∂ eik(r·θ0)

∂n

∥∥∥∥ + kγ ‖eik(r·θ0)‖

� kγ ‖u‖ +
√

Sk(1 + γ ) � 2k
√

S(1 + γ ).

Now from (10) and (11) we have

σγ � 1

k
‖u‖

∥∥∥∥∂u

∂n

∥∥∥∥ � 1

k

(√
S(1 + γ )

γ

)
(2k

√
S(1 + γ )) = 2S(1 + γ )2

γ
. (12)

This ends the proof of the first part of theorem 1.
From (6) we have for k → ∞

|fγ (θ)|2 = 1

4
K(y+(θ))−1

(
γ − 〈n(θ), θ〉
γ + 〈n(θ), θ〉

)2

+ O(1/k), θ 	= θ0, (13)

where estimate O(1/k) in (13) is uniform on compact subsets of {θ ∈ S2|θ 	= θ0}.
Using (7) and the fact that the density of the integral (5) is continuous and it becomes

zero in the point θ = θ0, we obtain for k → ∞

Rγ =
∫

S2
(1 − 〈θ, θ0〉)|fγ (θ)|2 dµ(θ)

=
∫

S2
(1 − 〈θ, θ0〉)(4K(y+(θ)))−1

(
γ − 〈n(θ), θ〉
γ + 〈n(θ), θ〉

)2

dµ(θ) + o(1). (14)

We now define a change of variables θ(x) : I → S2. Let n(x) be an outward normal in
the point y+(x) = (x, g(x)) ∈ ∂�, then we put θ(x) = θ0 − 2〈n(x), θ0〉n. It is easy to see
that θ(x) ∈ S2 and this map is one-to-one, since the obstacle � is strictly convex and therefore
the Gauss map n(x) is also one-to-one.
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Let us introduce standard spherical coordinates (cos(̃θ), ϕ̃) ∈ [−1, 1] × [0, 2π). We
now calculate the Jacobian D(cos(̃θ), ϕ̃)/D(x1, x2), where (x1, x2) = x are orthonormal
coordinates on I.

Note that

θ(x) =
(

2g′
x1

1 + |∇g|2 ,
2g′

x2

1 + |∇g|2 ,
|∇g|2 − 1

|∇g|2 + 1

)
cos(̃θ) = 1 − 2

|∇g|2 + 1
,

ϕ̃ = arctan(g′
x2

/g′
x1

)

D(cos(̃θ), ϕ̃)

D(x1, x2)
=

∣∣∣∣cos(̃θ)′x1
ϕ̃′

x1

cos(̃θ)′x2
ϕ̃′

x2

∣∣∣∣
= 4

(1 + |∇g|2)(|∇g|2)
∣∣∣∣g′

x1
g′′

x1x1
+ g′

x2
g′′

x1x2
g′

x1
g′′

x1x2
− g′

x2
g′′

x1x1

g′
x1

g′′
x1x2

+ g′
x2

g′′
x2x2

g′
x1

g′′
x2x2

− g′
x2

g′′
x1x2

∣∣∣∣
= 4((g′′

x1x2
)2 − g′′

x1x1
g′′

x2x2
)

1 + |∇g|2 = −4K(x1, x2). (15)

Note now that for x ∈ I

〈θ0 − θ(x), θ0〉 = 〈2〈n(x), θ0〉n, θ0〉 = 2〈n(x), θ0〉2 = 2

1 + |∇u(x)|2 . (16)

Applying (16) and (15) for (14) we obtain (8). Theorem 1 is proved.

3. Discussions

As we mentioned in the beginning of the paper, the uniform boundedness of the total cross
section gives us the possibility of calculating the high-frequency limit of observables with
integrand vanishing at θ0 = 0. Investigation of other observables could be done after
description of scattering amplitude as it is done in Dirichlet or Neumann cases:

In the case of Dirichlet (or Neumann) boundary conditions, the limit behavior of the
scattering amplitude in the high-frequency regime has been described completely by the
following two statements [1, theorem 1]:

f∞(θ) = 1
2K(y+(θ))−1/2 eik〈y+(θ)·(θ−θ0)〉 + O(1/k), θ 	= θ0. (17)

The estimate O(1/k) is uniform on compact subsets of {θ ∈ S2|θ 	= θ0}.
The behavior near the forward directions is given by (see [9, 10])

lim
k→∞

|f∞|2 = |f |2cl + σclδ(θ0), (18)

where |fcl(θ)|2 = (2K(y+(θ)))−1 is the classical density of scattered rays, δ(·) is a Dirac delta
function, and the limit is in the sense of distributions. This formula allows one to obtain limits
at high k of all quantities such as∫

S2
ϕ(θ)|f∞(θ)|2dµ(θ), ϕ ∈ C(S2). (19)

In particular, we have

lim
k→∞

σ∞ = 2σcl, lim
k→∞

R∞ = Rcl. (20)

Here σcl, Rcl are the classical total cross section and classical transport cross section. The
limit of σ∞ in the case of a sphere is calculated in many physics textbooks, and for the case of
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convex bodies there is a rigorous proof in [11]. Moreover, this fact (limk→∞ σ∞ = 2σcl) was
used in [9] to prove (18).1
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